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LETTER TO THE EDITOR 

Analytic expression for the distribution of gel species in 
spatially homogeneous systems 

Eric Hendriks 
Institut fur Theoretische Physik, Universitat zu Koln, D-5000 Koln 41, West Germany 

Received 23 April 1985 

Abstract. The equilibrium solution of the stochastic coagulation-fragmentation equations, 
for a spatially homogeneous system containing M monomers, is studied. If the coagulation- 
fragmentation rates K,,  and FcJ satisfy the condition F, /K , ,  = Aa,a,/a,+, (needed to guaran- 
tee detailed balance) with a k =  Ak-'z ik  and 2 <  S < 3, then the ensemble average size 
distribution ( x k )  has a clearly bimodal character in the gel phase. The distribution of gel 
species is sharply peaked near k = Mg, where g is the gel fraction for the infinite system, 
with a width E M ' ! ( 6 - ' ) .  The scaling function describing its precise shape is determined 
analytically. This function is highly non-symmetric; its second moment diverges. 

In this letter the asymptotically exact distribution of gel species4.e.  the probability 
distribution for the size of the largest cluster-is derived for a class of equilibrium 
models of polymerisation. These models describe the formation and break up of 
clusters (macromolecules), distributed homogeneously in a volume V. The total number 
M of monomeric units is fixed. These units are distributed among clusters of various 
sizes. The microscopic state of the system is specified by the cluster size distribution 
x = (xl ,  x2,. . . , x M )  where xk denotes the number of clusters containing k units (i.e. 
the number of k-mers) in the state x. This state may change under the influence of 
two basic processes: the formation of a cluster out of two smaller ones ('coagulation') 
and the break up of a cluster into two smaller ones ('fragmentation'). We assume that 
the corresponding reaction rates are such that the condition of microscopic detailed 
balance is satisfied. In that case we obtain [ l ,  91 the condition 

Fij/ K ,  = Aaiaj/aiij (1) 
where Fzj and K,, are the fragmentation and coagulation rates for a process involving 
one i-mer and one j-mer, and A and ak are numbers. Without loss of generality we 
may put a, = 1. The constant A is then a measure of the fragmentation strength. The 
equilibrium probability disjribution for microstates x may then be written as [ 1,2] 

We assume [l] the ak to have the following asymptotic behaviour 

ak = Ak-'zik k+co (3) 
depending on the parameters A, 6 and z ,  (which are defined through this equation). 
For the so-called classical models of polymerisation [2-5,9] k!ak  can be identified 
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with the number of different ways of combining k monomers to build a k-mer [3]. 
For these models 6 =;. The thermodynamic limit is defined by taking M + m ,  V+CO 
keeping the parameter q = AV/ M fixed. For 6 > 2 ,  a phase transition occurs at a 
critical value q, of q [l], with 

a 

qc = kUkZ,k = ZcF'( Z , )  
k = l  

where F ( z )  is the generating function of the ak [l ,  31 

(4) 

This function has a singularity at z = z,, on account of (3). For q > q,, a cluster with 
a size k = gM (the gel), proportional to the system size M, appears. The quantity g 
is called the gel fraction. It has been shown [I]  from ( 2 )  that g = 1 - qc/q.  Here we 
show that for q > qc, the ensemble average value of the cluster size distribution 
( X k ) = ~ k X k P e q ( X )  has a bimodal character. It is a superposition of a distribution of 
sol species and a distribution of gel species (see figure 1). The latter is characterised 
by a maximum near k = gM (with g = 1 - q c / q ) .  The width of this distribution scales 
as M''''-'), as M + m ,  with 6 as in (3) .  Its shape is described by a scaling function, 
which has some surprising properties: it is highly non-symmetric and its second moment 
diverges. This constitutes a generalisation of a result by Donoghue [4], valid for the 
aforementioned classical models. 

From ( 2 ) ,  an exact formula for the ensemble average size distribution can be derived 
[ 11, valid for finite M :  

( x k )  = ( M / q ) a k z k / z O  
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Figure 1. The ensemble average number of clusters ( x k )  calculated numerically from ( 6 )  
for a system containing 500 monomers with ak = k-5'2 (6  =$). Note the vertical scale. 
Already for M = 500 the distribution of gel species clearly emerges, showing a maximum 
near k = Mg with g = 1 - q,/q (in the figure q = 2qJ. For M + 00 this maximum shifts to 
the right, whereby the distribution of sol and gel species become separated more clearly. 
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with 

where F (  z )  was defined in ( 5 ) .  The integration path is a closed contour, close enough 
to the origin in the complex z plane. By partial integration one obtains a recursion 
relation for I,, which can be solved numerically. A distinct distribution of gel species 
emerges even for small systems (see figure 1). 

It is possible to derive the limiting form of the two component size distributions 
analytically, for large M. For fixed k and M + CO, the method of stationary phase [6] 
may be applied to (7). In this limit, the stationary points of the expression in the 
exponent are given through the equation z F ' ( z )  = q. In the sol phase ( q  < q,), there 
is always a solution z = z *  to this equation lying inside the circle of convergence 
( I z l<  z,) of F (  z ) ,  as a consequence of (4) and ( 5 ) .  The one closest to z = 0 lies on the 
positive, real axis. The method of stationary phase, applied to (7), then yields for xk 
in (6): 

This distribution contains all the mass, present in the system, since x k  k (&)  = M,  as 
follows from the equation satisfied by z*. It is valid in the sol phase ( q  < qc),  when 
there is no gel. For k + CO, this distribution behaves as constant x k-'( z * / ~ , ) ~ ,  i.e. it shows 
exponential decrease dressed with an algebraic prefactor. 

For q > q,, the above method fails, since z* lies outside the circle of convergence 
of F ( z ) .  In this case, we apply a somewhat different method. On account of (3), (4) 
and ( 5 ) ,  F (  z )  is singular in z = z, with the expansion 

6-1 

F (  z )  = Fc + qc( z-L.) + AT( 1 - a)( 7) 
Z C  

+O((z-Z,)*) ( z  - zcI + 0,  z - Z,iz R, (9) 

where we have assumed 2 < 6 < 3 (for S s 2, qc = CO and no phase transition occurs). 
We deform the path of integration in equation (7) in such a way that it approaches 
the point z = z, along the ray z - zCX (with $ fixed) and leaves it along the ray 
z - z,K ei'. First we consider finite, fixed values of k and q > qc. Then it can be shown, 
if $ is chosen within the range [fr( 6 - l)-', {T( S - l)-'], that for M + CO the asymptotic 
dominant contribution to the integral comes from the immediate neighbourhood of 
z = z,, so that for F ( z )  its expansion about z = z,, (9) can be substituted. After some 
algebra, this yields 

M+CO. (10) zk L1 ( A / ~ )  e ( M / q ) F ~ z , k - M - l M ' - 6 g - ~  

Here g = 1 - qc/ q is the gel fraction, F, = F( z,) and the parameters A, S and z, are as 
in (3) .  Hence, using (6) 

(Xk)':(M/q)akZ," k fixed, M + CO, q > qc (11) 
represents the distribution of sol species in the gel phase. This distribution does not 
contain all the mass in the system, as follows from (4) and ( 5 ) .  The 'missing mass' 
(1 - q , /q )M is in the gel. 

Next we derive the asymptotic form of the distribution of gel species. Since this 
distribution is sharply peaked about k = Mg, for large M, we introduce a parameter y 
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through the equation: k = Mg + M a y  where a (< 1) is a parameter for the width of the 
peak, to be determined. Again, choosing J, in the range specified above, one shows 
that for fixed y the dominant contribution to I k  comes from the immediate neighbour- 
hood of z = z,. The value of a is determined from the condition that this contribution 
depends on y in a non-trivial way (i.e. that it is not equal to a constant, or zero or 
infinite). One finds a = (6 - l)-’. For this value of a a non-trivial y dependence is 
derived by substituting (9) into ( 7 )  and expanding about z = z,. The term linear in 
U = z - z ,  disappears for g = 1 - q c / q  and the term proportional to U’ becomes confluent 
with the term containing y ,  as M-*co. The result, combined with (10) for k=0, 
substituted into (6)-where ak may now be replaced by its asymptotic behaviour, 
(3)-can be written in the form 

( x k )  = ( q M / A ) - l / ( s - l )  . G s (( q l A )  ‘ / t S - l j  . Y )  k = Mg+yM’’(S-”, M + c o , y  fixed 

where G 8 ( y )  is a scaling function, describing in detail the distribution of gel species. 
An explicit formula for G6(y) is the following 

(12) 

G,(y )=-  dt‘exp(yr+T(1-6)(-r)s-1). (13) 2 m  1“ - , E  

This expression follows by taking the path of integration in ( 7 )  at right angles to the 
real axis (J ,  = T )  through the point z = z ,  and subsequently substituting z -  zc= 
t ~ - l / ( 6 - 1 j  , keeping the dominant contribution for M + m .  

Typically, the graph of G,(y) has a shape as in figure 2 (which corresponds to 
numerical calculations for 6 = 2.2 and S = 2 . 5 ) .  It has a maximum for some positive 
y value, which shifts to the right with decreasing 6. Using standard methods, one 
derives the following properties: jTm G s ( y )  dy = 1 (this corresponds to the fact that 

Y 

Figure 2. Plot of the scaling function G,(y) as a function of the scaling variable y, describing 
the exact shape of the limiting distribution of gel species, for two values of 8 :  S = 2.2 
(broken curve) and S =2.5 (full curve). Note the asymmetric character of G , ( y ) ,  showing 
algebraic decay ~ ( - y ) - ~  for y+-cc and superexponential decrease for y++m. The 
second moment of G,(y) diverges, since 2 < S < 3. 
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the gel contains a single cluster), G,(y) = ( - y ) - ,  (U+ -CO),  and G,(y) = 
C l y p  exp(-C,y”) ( ~ + + C O )  wherep=i (3-S) / (S-2) ,  v=(S-1) / (6-2)  andthecon- 
stants Ck are more complicated, known functions of 6. Note the highly asymmetric 
character of the distribution. For S = i, (1) is in agreement with a corresponding result 
of Donoghue [3]. As M + CO, (12) and (13) also describe the probability distribution 
for the size of the largest cluster in the gel phase. The properties of the scaling function, 
notably the divergence of its second moment, have some interesting consequences. 
Suppose one deals with a system, similar to the one discussed in this letter, but for 
which no analytic expressions such as ( 6 )  can be derived. An example might be given 
by the problem of percolation on a d-dimensional lattice. Suppose further that one 
wants to determine the gel fraction numerically. In a typical Monte Carlo experiment 
one would simply determine the size of the largest cluster, k,,,, N times and calculate 
the average value g = (1/ N M )  Z,, IC::,. For the exactly soluble problem discussed in 
this letter, it follows from (12) and (13) that this quantity is itself distributed about 

= g (  = 1 - qc/ q ) ,  with a distribution of exactly the same shape as in figure 2 (13), but 
with a width a(MN)(2-61’(6-1) . N ote that the dependence on N is not a N-’I2( N + CO). 

This is due to properties of G,(y). These render the central limit theorem [8] invalid 
for this case. If this kind of behaviour would also occur for the abovementioned 
systems, where one has to resort to numerical methods to determine the gel fraction 
g, then that would imply that the error bars are much larger than customarily expected 

It would, therefore, be of interest to determine the distribution of k,,, and its 
scaling properties for these non-analytically soluble problems. In summary, at least 
for the system discussed in this letter, the gel fraction for large but finite systems 
fluctuates asymmetrically about its mean value, with a width where 6 is 
defined through (3), described by the scaling function (13), whose second moment 
diverges. Details of the calculation will be published elsewhere. 

s (especially for S near 2 ) .  

It is a pleasure to thank M Eibl and T Nieuwenhuizen for helpful suggestions. 
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